From: D.). Bernstein <djb@cr.yp.to

To: pgc-comments@nist.gov

cc: pgc-forum@list.nist.gov

Subject: ROUND 3 OFFICIAL COMMENT: Classic McEliece
Date: Monday, June 06, 2022 12:21:02 PM ET

Attachments: smime.p7m

This is an official comment from the Classic McEliece team regarding a
recent talk at Eurocrypt on https://eprint.iacr.org/2021/1634, a paper
reporting implementations of the MMT/BJMM algorithms using about 2760.7
cycles in total on 256 AMD EPYC 7742 CPU cores to break miniature
versions of McEliece with length 1284.

For comparison, when the 2021 Bellini--Esser estimator

https://github.com/Crypto-TII/syndrome_decoding_estimator.git

is told to ignore the cost of memory access ("memory_access=0"), it says
2766.3 bit operations for 1989 Stern, followed by minor improvements
from newer memory-intensive algorithms, such as 2765.8 bit operations
for BIMM and 2"64.6 bit operations for May--Ozerov. These numbers are
larger than 2760.7, but the units are also different: bit operations

rather than CPU cycles.

These algorithms were already accounted for in the Classic McEliece
submission in 2017, which, regarding the recommended 6960119 parameter
set, wrote "ISD variants have reduced the number of bit operations
considerably below 27256". The submission also pointed out that this
ignores the cost of memory access, and stated an expectation that
"switching from a bit-operation analysis to a cost analysis will show
that this parameter set is more expensive to break than AES-256

pre-quantum and much more expensive to break than AES-256 post-quantum."

This expectation was then confirmed by subsequent analysis. For example,
the Bellini--Esser estimator with "memory_access=2" reports cost
27279.2, as noted in the Classic McEliece team email to pgc-forum in

November 2021.

Page 1 of 3

mailto:djb@cr.yp.to
mailto:pqc-comments@nist.gov
mailto:pqc-forum@list.nist.gov

This is an official comment from the Classic McEliece team regarding a

recent talk at Eurocrypt on https://eprint.iacr.org/2021/1634, a paper

reporting implementations of the MMT/BJMM algorithms using about 2^60.7

cycles in total on 256 AMD EPYC 7742 CPU cores to break miniature

versions of McEliece with length 1284.

For comparison, when the 2021 Bellini--Esser estimator

 https://github.com/Crypto-TII/syndrome_decoding_estimator.git

is told to ignore the cost of memory access ("memory_access=0"), it says

2^66.3 bit operations for 1989 Stern, followed by minor improvements

from newer memory-intensive algorithms, such as 2^65.8 bit operations

for BJMM and 2^64.6 bit operations for May--Ozerov. These numbers are

larger than 2^60.7, but the units are also different: bit operations

rather than CPU cycles.

These algorithms were already accounted for in the Classic McEliece

submission in 2017, which, regarding the recommended 6960119 parameter

set, wrote "ISD variants have reduced the number of bit operations

considerably below 2^256". The submission also pointed out that this

ignores the cost of memory access, and stated an expectation that

"switching from a bit-operation analysis to a cost analysis will show

that this parameter set is more expensive to break than AES-256

pre-quantum and much more expensive to break than AES-256 post-quantum."

This expectation was then confirmed by subsequent analysis. For example,

the Bellini--Esser estimator with "memory_access=2" reports cost

2^279.2, as noted in the Classic McEliece team email to pqc-forum in

November 2021.

Anyone who wants such a high security level _without_ relying on the

cost of memory access can instead use the 8192128 parameter set, where

the Bellini--Esser estimator with "memory_access=0" says 2^275.6 bit

operations for May--Ozerov, assigning zero cost to 2^194.4 memory. The

exponent here is about 10% better than attacks from the 1980s (e.g., the

estimator says 2^307.4 bit operations for Dumer), but the changes in

costs are much smaller if one accounts for the real cost of memory.

The new paper and talk claim that some of the Classic McEliece parameter

sets "fail to reach their security level by roughly 20 and 10 bit", that

"McEliece Slightly Overestimates Security", etc., giving the impression

of challenging the Classic McEliece security analysis and parameter

selection. However, these claims are based on three serious errors.

The first error is comparing the cost of a memory-intensive attack to

the cost of an AES attack "on our hardware," while ignoring the fact

that the machine puts a large volume of hardware into optimizing memory

access and only a tiny fraction of the hardware into AES circuits. It is

easy to make an AES attack sound much more expensive than it actually is

if one uses a highly suboptimal AES attack machine.

The second error is modeling random access to an array of size 2^80 as

being as cheap as 80 bit operations. The way the paper arrives at this

physically implausible model is by arguing that logarithmic cost "most

accurately models our experimental data". The data points were selected

from a limited range for which memory access has essentially constant

cost on that machine; this is selection bias, not a valid basis for

extrapolation.

The third error is jumping from a comparison in this cheap-RAM model to

a claim of a Classic McEliece "overestimate". The submission has always

said that the number of bit operations is "considerably below 2^256";

obviously this does not reach 2^272 if one assigns merely logarithmic

cost to RAM (changing the exponent by at most 8 bits). What the paper

says here is matching what the submission says, not disputing it. The

Classic McEliece assignment of category 5 to the 6960119 parameter set

has always been explicitly based on the real cost of memory access.

-----BEGIN PGP SIGNATURE-----

iQIzBAEBCAAdFiEE3QolqQXydru4e4ITsMANTjsOVFkFAmKeKVwACgkQsMANTjsO

VFlyKBAA0pfKL2HpVlfHOfkgUEaw6I2ylB/+rw2UshG02rS7C7kmUzWTBEHHpMjM

utPHc5tGlWBUFhRciq/UrQDegMggN3nGM0dty3re9AD9EDDbExU2UG6RUlmUeZ+d

b/0QEnlASloOHcZ/gnVPa6zCQb5HJH8Eg9by+6spRTgMSXu+VLdd5r6kfDY0HCih

F5t1lmndvinWBg8LuhQTM0eHfzeN5yzO8zQPIAlrqHI+UzQYHQkrPLC55seT0Qbd

vLN0J9jxaFti6nfe7tCqKmGcqJ2r5jtQkTQC+KUv5Ko6mEfEE9kh53Wg3lnS8sed

iOexbsS6mJvtDX9fbEFZv/pBH72973qrIzluU3j3lFRopI9wLJI/VNViz35HEIaU

yo3gnylws/bH8+APGNHzpmuvUyz5CC5tUzMNREu/NI5rEmQuY1MdjwYWMSQGfCQl

rjxeD5kRzAr8lmKshochW3SpuhcoSQeVhLULuBJ3MN0famZzFUGKRZVEwU7/39N9

knFKt4XhvKsJA5LPFVZsDvY4NXm0w4vga1sa+iHJV72Jk05AlZyupw5YcHWCqhBu

wQXI8Z1l/71mD0yhe5A0qpY+vtdyDw26HyjKgfPFcR3ZqLRKQzAHbQAHLwGWJJrY

5VBbYectztRrjRQjuLzE9Y9bdJd08ofyPuQBwPuKMztWI0y2qhM=

=l9o2

-----END PGP SIGNATURE-----

D.]J. Bernstein <djb@cr.yp.to>

Anyone who wants such a high security level _without_ relying on the
cost of memory access can instead use the 8192128 parameter set, where
the Bellini--Esser estimator with "memory_access=0" says 2"275.6 bit
operations for May--Ozerov, assigning zero cost to 2"194.4 memory. The
exponent here is about 10% better than attacks from the 1980s (e.g., the
estimator says 2"307.4 bit operations for Dumer), but the changes in

costs are much smaller if one accounts for the real cost of memory.

The new paper and talk claim that some of the Classic McEliece parameter
sets "fail to reach their security level by roughly 20 and 10 bit", that
"McEliece Slightly Overestimates Security", etc., giving the impression

of challenging the Classic McEliece security analysis and parameter

selection. However, these claims are based on three serious errors.

The first error is comparing the cost of a memory-intensive attack to

the cost of an AES attack "on our hardware," while ignoring the fact

that the machine puts a large volume of hardware into optimizing memory
access and only a tiny fraction of the hardware into AES circuits. It is
easy to make an AES attack sound much more expensive than it actually is

if one uses a highly suboptimal AES attack machine.

The second error is modeling random access to an array of size 2780 as
being as cheap as 80 bit operations. The way the paper arrives at this
physically implausible model is by arguing that logarithmic cost "most
accurately models our experimental data". The data points were selected
from a limited range for which memory access has essentially constant
cost on that machine; this is selection bias, not a valid basis for

extrapolation.

The third error is jumping from a comparison in this cheap-RAM model to
a claim of a Classic McEliece "overestimate". The submission has always
said that the number of bit operations is "considerably below 2"256";
obviously this does not reach 27272 if one assigns merely logarithmic
cost to RAM (changing the exponent by at most 8 bits). What the paper

says here is matching what the submission says, not disputing it. The

Page 2 of 3

D.]J. Bernstein <djb@cr.yp.to>

Classic McEliece assignment of category 5 to the 6960119 parameter set

has always been explicitly based on the real cost of memory access.

Page 3 of 3

From: Andre Esser <andre.r.esser@gmail.com> via pac-forum®@list.nist.gov
To: pgc-forum <pgc-forum@list.nist.gov>

cc: D. J. Bernstein <djb@cr.yp.to>, pgc-...@list.nist.gov <pgc-forum@list.nist.gov>, pqc-co...@nist.gov
<pgc-comments@nist.gov>, pqc-co...@nist.gov <pgc-comments@nist.gov>

Subject: [pgc-forum] Re: ROUND 3 OFFICIAL COMMENT: Classic McEliece
Date: Wednesday, June 08, 2022 05:20:33 AM ET

The parameter selection process of Classic McEliece takes the asymptotic runtime exponent
of Prange

and chooses the code parameters such that it approximately matches the respective AES-
keysize, i.e., 128, 192 or 256.

The security analysis then relies on the not quantified statement that no algorithmic
improvement over Prange needs

to be considered because in a real attack the memory access costs outweigh the
improvement.

It does not need much to “challenge this security analysis and parameter selection”. And
without a doubt this can not

be sufficient for a final standardization of parameter sets. For this, the McEliece team has to
extend its submission

(in the forth round) by the necessary formalisms that support their security arguments.

Instead the team attacks the credibility of the authors of one of the first formal treatments,
arriving at the conclusion

of a slight security overestimation. It seems unclear, how the team can rule out a security
deficit of a few bits with such

certainty, but is failing to give a convincing argument / formalism in the submission.

> The first error is comparing the cost of a memory-intensive attack to

> the cost of an AES attack “on our hardware,” while ignoring the fact

> that the machine puts a large volume of hardware into optimizing memory
> access and only a tiny fraction of the hardware into AES circuits. It is

Page 1 0of 6

mailto:andre.r.esser@gmail.com
mailto:pqc-forum@list.nist.gov
mailto:pqc-forum@list.nist.gov
mailto:djb@cr.yp.to
mailto:pqc-forum@list.nist.gov
mailto:pqc-comments@nist.gov
mailto:pqc-comments@nist.gov

Andre Esser <andre.r.esser@gmail.com>

> easy to make an AES attack sound much more expensive than it actually is

> if one uses a highly suboptimal AES attack machine.

While we would not agree that a processor with AES hardware acceleration is a particularly
suboptimal way of attacking

AES, there are of course more specialized systems, but so are for ISD attacks. This goes
probably back to the vague

security definitions in form of category |, Ill and V, which do not specify any benchmarking
platform, model or metrics.

But here you are asking us to provide the formalisms on which you seem to have based the
security of the parameter sets.

We are happy to have a dialogue about it, but the “error” of missing formalisms for such a
comparison is not on us.

Also note that the effect of the exact machine we used in comparison to a completely
theoretical treatment is insignificant.

We arrive at almost the same security-deficits as Esser-Bellini.

> The second error is modeling random access to an array of size 2A80 as

> being as cheap as 80 bit operations. The way the paper arrives at this

> physically implausible model is by arguing that logarithmic cost “most

> accurately models our experimental data”. The data points were selected

> from a limited range for which memory access has essentially constant

> cost on that machine; this is selection bias, not a valid basis for

> extrapolation.

We are modeling the amortized memory access cost. This accounts for the fact that not every
memory access is completely

random. Moreover, our data structures are specifically designed to allow for good access
patterns.

Of course, by the inherent limitation given by our hardware constraints the data points for
extrapolation are selected from a

limited range. However, the high memory experiments were run using about 1.6TB of RAM
(which gives significant access times).

And still we find the point where high memory beats low memory at code length 1400. If we
theoretically model higher memory

Page 2 of 6

Andre Esser <andre.r.esser@gmail.com>

access costs this break even point should not exist.

> The third error is jumping from a comparison in this cheap-RAM model to

> a claim of a Classic McEliece “overestimate”. The submission has always

> said that the number of bit operations is “considerably below 2/A256";

> obviously this does not reach 2/272 if one assigns merely logarithmic

> cost to RAM (changing the exponent by at most 8 bits). What the paper

> says here is matching what the submission says, not disputing it. The

> Classic McEliece assignment of category 5 to the 6960119 parameter set

> has always been explicitly based on the real cost of memory access.

The McEliece submission does never specify what the “real cost of memory access” is and to
what extend it influences the security

level. Making it easy to rule out any access cost that contradicts the security as “not real”.
Moreover, the category 3 set has now

been found repeatedly to not match the security guarantees even under higher memory
access costs.

We do not claim that our work is the holy grail in terms of formalizing security arguments for
McEliece, but the introduction of

formalisms were overdue. Admittedly, the memory access models are quite idealized, but we
are convinced that a cube-root modeling

of the amortized cost overestimates the effort.

We are happy to have discussions about it and to see other models evolving that do a better
job in capturing all real world factors.

And finally, of course, we hope to see the results embedded in the Classic McEliece
specification and security analysis.

However, we would like all discussions to be peace- and respectful. And preferably in person
or in papers, to avoid the time consuming

crafting of such long monologues.
Best Regards,

Andre, Alex and Floyd

Page 3 of 6

Andre Esser <andre.r.esser@gmail.com>

D. J. Bernstein schrieb am Montag, 6. Juni 2022 um 20:21:02 UTC+4:

This is an official comment from the Classic McEliece team regarding a
recent talk at Eurocrypt on https://eprint.iacr.org/2021/1634, a paper

reporting implementations of the MMT/BJMM algorithms using about 2/60.7
cycles in total on 256 AMD EPYC 7742 CPU cores to break miniature
versions of McEliece with length 1284.

For comparison, when the 2021 Bellini--Esser estimator

https://github.com/Crypto-TIl/syndrome_decoding_estimator.git

is told to ignore the cost of memory access ("memory_access=0"), it says
2/66.3 bit operations for 1989 Stern, followed by minor improvements
from newer memory-intensive algorithms, such as 2265.8 bit operations
for BJIMM and 2764.6 bit operations for May--Ozerov. These numbers are
larger than 2760.7, but the units are also different: bit operations

rather than CPU cycles.

These algorithms were already accounted for in the Classic McEliece
submission in 2017, which, regarding the recommended 6960119 parameter
set, wrote "ISD variants have reduced the number of bit operations
considerably below 2A256". The submission also pointed out that this

ignores the cost of memory access, and stated an expectation that

"switching from a bit-operation analysis to a cost analysis will show

that this parameter set is more expensive to break than AES-256

pre-quantum and much more expensive to break than AES-256 post-quantum.”

This expectation was then confirmed by subsequent analysis. For example,
the Bellini--Esser estimator with "memory_access=2" reports cost

27279.2, as noted in the Classic McEliece team email to pgc-forum in
November 2021.

Anyone who wants such a high security level _without_ relying on the

cost of memory access can instead use the 8192128 parameter set, where
the Bellini--Esser estimator with "memory_access=0" says 2/A275.6 bit

Page 4 of 6

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Feprint.iacr.org%2F2021%2F1634&data=05%7C01%7Cangela.robinson%40nist.gov%7C799209cd89604b92a92c08da49302226%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C637902768333430370%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=ZqOuOjwY%2F2S9mOGpYKlqD6w5%2FO4r4JqvzEmmp4Er9AQ%3D&reserved=0
https://github.com/Crypto-TII/syndrome_decoding_estimator.git

Andre Esser <andre.r.esser@gmail.com>

operations for May--Ozerov, assigning zero cost to 2A194.4 memory. The
exponent here is about 10% better than attacks from the 1980s (e.g., the
estimator says 2A307.4 bit operations for Dumer), but the changes in
costs are much smaller if one accounts for the real cost of memory.

The new paper and talk claim that some of the Classic McEliece parameter
sets "fail to reach their security level by roughly 20 and 10 bit", that
"McEliece Slightly Overestimates Security", etc., giving the impression

of challenging the Classic McEliece security analysis and parameter
selection. However, these claims are based on three serious errors.

The first error is comparing the cost of a memory-intensive attack to

the cost of an AES attack "on our hardware," while ignoring the fact

that the machine puts a large volume of hardware into optimizing memory
access and only a tiny fraction of the hardware into AES circuits. It is

easy to make an AES attack sound much more expensive than it actually is
if one uses a highly suboptimal AES attack machine.

The second error is modeling random access to an array of size 2280 as
being as cheap as 80 bit operations. The way the paper arrives at this
physically implausible model is by arguing that logarithmic cost "most
accurately models our experimental data". The data points were selected
from a limited range for which memory access has essentially constant
cost on that machine; this is selection bias, not a valid basis for
extrapolation.

The third error is jumping from a comparison in this cheap-RAM model to
a claim of a Classic McEliece "overestimate". The submission has always
said that the number of bit operations is "considerably below 2/256";
obviously this does not reach 22272 if one assigns merely logarithmic
cost to RAM (changing the exponent by at most 8 bits). What the paper
says here is matching what the submission says, not disputing it. The
Classic McEliece assignment of category 5 to the 6960119 parameter set
has always been explicitly based on the real cost of memory access.

You received this message because you are subscribed to the Google Groups "pgc-forum”
group.

Page 5 of 6

Andre Esser <andre.r.esser@gmail.com>

To unsubscribe from this group and stop receiving emails from it, send an email to pqc-
forum+unsubscribe@list.nist.gov.

To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pgc-
forum/86bbc463-9f7e-49a1-9356-fbf964bb352dn%40list.nist.gov.

Page 6 of 6

mailto:pqc-forum+unsubscribe@list.nist.gov
mailto:pqc-forum+unsubscribe@list.nist.gov
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/86bbc463-9f7e-49a1-9356-fbf964bb352dn%40list.nist.gov?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/86bbc463-9f7e-49a1-9356-fbf964bb352dn%40list.nist.gov?utm_medium=email&utm_source=footer

From: D.). Bernstein <djb@cr.yp.to

To: pgc-comments@nist.gov

cc: pqc-forum@list.nist.gov

Subject: Re: [pgc-forum] Re: ROUND 3 OFFICIAL COMMENT: Classic McEliece
Date: Tuesday, June 14, 2022 12:07:03 AM ET

Attachments: smime.p7m

Andre Esser writes:

> The parameter selection process of Classic McEliece takes the

> asymptotic runtime exponent of Prange and chooses the code parameters
> such that it approximately matches the respective AES-keysize, i.e.,

> 128, 192 or 256.

No, that's not at all how the Classic McEliece parameters were chosen.

The parameter sets were explicitly selected as follows:

* 348864: "optimal security within 2718 bytes if n and t are required
to be multiples of 32".

* 460896: "optimal security within 2719 bytes if n and t are required
to be multiples of 32".

* 6688128: "optimal security within 2720 bytes if n and t are required
to be multiples of 32".

* 6960119: same without the multiples-of-32 restriction.

* 8192128: "taking both n and t to be powers of 2".

Parameter optimization for any specified key size is simpler and more
robust than trying to work backwards from comparisons between McEliece
and unrelated cryptosystems. There's no inherent power-of-2 requirement

for the key sizes, but 1MB, 0.5MB, 0.25MB are easy to remember.

The quotes above are from the submission document that presented the

current list of proposed parameters:

https://classic.mceliece.org/nist/mceliece-20190331-mods.pdf

Scientifically, this parameter-selection strategy for McEliece goes back

at least to https://eprint.iacr.org/2008/318. See the paragraph in that

Page 1 0of 6

mailto:djb@cr.yp.to
mailto:pqc-comments@nist.gov
mailto:pqc-forum@list.nist.gov

Andre Esser writes:

> The parameter selection process of Classic McEliece takes the

> asymptotic runtime exponent of Prange and chooses the code parameters

> such that it approximately matches the respective AES-keysize, i.e.,

> 128, 192 or 256.

No, that's not at all how the Classic McEliece parameters were chosen.

The parameter sets were explicitly selected as follows:

 * 348864: "optimal security within 2^18 bytes if n and t are required

 to be multiples of 32".

 * 460896: "optimal security within 2^19 bytes if n and t are required

 to be multiples of 32".

 * 6688128: "optimal security within 2^20 bytes if n and t are required

 to be multiples of 32".

 * 6960119: same without the multiples-of-32 restriction.

 * 8192128: "taking both n and t to be powers of 2".

Parameter optimization for any specified key size is simpler and more

robust than trying to work backwards from comparisons between McEliece

and unrelated cryptosystems. There's no inherent power-of-2 requirement

for the key sizes, but 1MB, 0.5MB, 0.25MB are easy to remember.

The quotes above are from the submission document that presented the

current list of proposed parameters:

 https://classic.mceliece.org/nist/mceliece-20190331-mods.pdf

Scientifically, this parameter-selection strategy for McEliece goes back

at least to https://eprint.iacr.org/2008/318. See the paragraph in that

paper beginning "For keys limited to", in particular obtaining n = 6960

from a 1MB limit.

The underlying security evaluations have always been explicitly based on

concrete analyses, _not_ asymptotics (even though asymptotics are

helpful for assessing security stability). This was already emphasized

in Section 8.2 of the original submission document:

 https://classic.mceliece.org/nist/mceliece-20171129.pdf

The section begins as follows:

 We emphasize that o(1) does not mean 0: it means something that

 converges to 0 as n → ∞. More detailed attack-cost evaluation is

 therefore required for any particular parameters.

That section continues by pointing to the 2008 paper mentioned above,

https://eprint.iacr.org/2008/318, as the source of n = 6960. Anyone

checking that paper sees that the paper obtained this value of n via a

concrete analysis of that paper's attack, not from asymptotics.

Furthermore, that attack is noticeably faster than Prange's algorithm.

Asymptotically, this cost difference disappears into a 1+o(1) factor in

the exponent, but the parameter selection has never relied on any such

simplification.

To be clear, it's not that all of the parameter details are from 2008.

For example, to simplify KEM implementations, the Classic McEliece

parameter choices avoid list decoding (which would otherwise allow 1 or

2 extra errors). More importantly, the smaller parameter sets were not

in the original 2017 proposal; they were added in 2019, in response to

NIST making clear in 2019 that it wanted smaller options.

For any particular parameter set, evaluations of the Classic McEliece

parameter proposals using the 2008 scripts and various post-2008 scripts

show some differences, mostly minor differences regarding exactly which

attack overheads are counted and exactly which attacks are covered. The

largest quantitative differences come from the gaps between free memory

and realistic models.

The Classic McEliece team filed an OFFICIAL COMMENT years ago requesting

that NIST "fully define the cost metric to be used" for NISTPQC, so that

all submission teams could evaluate costs in this metric:

 https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/EiwxGnfQgec/m/LqckEVciAQAJ

In the absence of action by NIST to settle on a metric for NISTPQC, the

Classic McEliece team filed another OFFICIAL COMMENT in November 2021

with numbers from a recent estimator for all proposed parameter sets:

 https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/dN_O0rvsLV4/m/QZ4UjtxnAwAJ

For example, that estimator says 2^279.2 for the 6960119 parameter set,

in line with the expectations stated in the original Classic McEliece

submission in 2017. This is not a surprise, given how stable the

landscape of attack algorithms has been.

> The security analysis then relies on the not quantified statement that no

> algorithmic improvement over Prange needs to be considered because in

> a real attack the memory access costs outweigh the improvement.

No. Section 8.2 of the 2017 submission document

 https://classic.mceliece.org/nist/mceliece-20171129.pdf

started from the 2008 numbers (which are already better than Prange),

explicitly considered subsequent algorithms (see also Section 4.1 for

references), observed that the 2008 algorithm and subsequent algorithms

were bottlenecked by memory access, and stated the following regarding

the recommended 6960119 parameter set:

 We expect that switching from a bit-operation analysis to a cost

 analysis will show that this parameter set is more expensive to break

 than AES-256 pre-quantum and much more expensive to break than

 AES-256 post-quantum.

Adequate cost quantification wasn't in the literature at that point, but

is now readily available from the November 2021 OFFICIAL COMMENT:

 https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/dN_O0rvsLV4/m/QZ4UjtxnAwAJ

The submission has always stated that "ISD variants have reduced the

number of bit operations considerably below 2^256" for 6960119, so the

category-5 assignment for this parameter set relies on accounting for

the costs of memory. For people who want category 5 while ignoring

memory costs, the 8192128 parameter set has always been fully specified

and implemented as part of the Classic McEliece proposal.

> While we would not agree that a processor with AES hardware

> acceleration is a particularly suboptimal way of attacking AES

Here is one way to see that an AES attacker using the same 7nm chip

technology can do _five orders of magnitude_ better than the paper's AES

attack:

 * https://www.ant-miner.store/product/antminer-s17-56th/ describes

 real Bitcoin mining hardware carrying out 56 terahashes/second at

 2520 watts, i.e., 45*10^-12 joules per hash. If these hashes are

 full Bitcoin hashes, 2xSHA-256, then they are roughly the same cost

 as 16xAES-128, so a similar AES attack box would use roughly

 3*10^-12 joules per AES-128.

 * The paper in question, https://eprint.iacr.org/2021/1634, reports

 (in Section 7) 2.16*10^9 "AES encryptions per second performed by

 our cluster". The cluster has four EPYC 7742 CPUs (according to

 Section 4). The power consumption of the cluster isn't reported,

 but presumably is on the scale of 1000 watts, i.e., on the scale of

 500000*10^-12 joules per AES-128.

An easier analysis considers AT rather than energy. Each 64-core EPYC

7742 CPU has 32 billion transistors, meaning that each CPU core has half

a billion transistors:

 https://hexus.net/tech/reviews/cpu/133244-amd-epyc-7742-2p-rome-server/?page=2

The AES attack in question uses the AES instructions, which, on each of

these cores, can at best carry out two parallel AES rounds per cycle

according to the Zen2 AESENC figures in Agner Fog's tables:

 https://agner.org/optimize/instruction_tables.pdf

Each round uses a few thousand bit operations, with a small number of

transistors per bit operation, accounting for only a tiny fraction of

the transistors in the CPU. Standard key-search circuits instead have

almost all transistors performing cipher operations at each moment, with

minor overheads for key selection and comparison.

> but so are for ISD attacks.

Quantitatively, compared to their AES hardware, Intel and AMD put _much_

more of their hardware into optimizing memory access---a serious chunk

of each core, plus extensive off-chip resources---for obvious reasons.

The point here isn't that it's impossible to use special-purpose

hardware to streamline memory-intensive attacks. The point is that a

claim regarding the quantitative costs of two attacks, namely AES key

search and a memory-intensive ISD attack, was comparing time but

neglecting to account for vast differences in the hardware resources

used by the attacks. This is not a meaningful security comparison; it

does not correctly predict what large-scale attackers can do.

> But here you are asking *us* to provide the formalisms on which you

> seem to have based the security of the parameter sets.

No. The Classic McEliece team asked "NIST to fully define the cost

metric to be used for 'categories'". This is not something that should

be decided ad-hoc for particular attacks.

The submission has always explicitly advocated accounting for the real

cost of memory ("switching from a bit-operation analysis to a cost

analysis"). If it turns out that NIST asks for category 5 with free

memory: as noted above, the 8192128 parameter set has always been

available.

> We are modeling the *amortized* memory access cost.

All of these algorithms are bottlenecked by large-scale data motion for,

e.g., sorting b-bit chunks of data, where b is small. It is physically

implausible that moving b bits of data large distances through an array

of size 2^80 can be as cheap as 80b bit operations.

> Of course, by the inherent limitation given by our hardware constraints the

> data points for extrapolation are selected from a limited range.

The hardware does not require this selection: the same machine offers

lower-cost caches (and higher-cost storage beyond DRAM). Real graphs of

memory-access cost such as

 https://i0.wp.com/chipsandcheese.com/wp-content/uploads/2022/06/image-4.png

 https://i0.wp.com/chipsandcheese.com/wp-content/uploads/2022/06/image-1.png

 source: https://chipsandcheese.com/2022/06/07/sunny-cove-intels-lost-generation/

are forced by distance constraints to be worse than square-root lines in

log space, and are then bumped to locally horizontal line segments (L1

cache, L2 cache, etc.) to simplify the engineering. Taking experiments

within one of those horizontal line segments, and then extrapolating

horizontally from this selection of data (or logarithmically, which on

such a small scale is difficult to robustly distinguish from

horizontally), gives incorrect predictions for larger sizes.

---D. J. Bernstein (speaking for myself, beyond the quotes)

-----BEGIN PGP SIGNATURE-----

iQIzBAEBCAAdFiEE3QolqQXydru4e4ITsMANTjsOVFkFAmKoCQsACgkQsMANTjsO

VFnieA/+KoUAjG/n13NswLdKBR/jjngRFWsk16/GZqzkOLYFUlihu+apFOUMPCBd

UR1SSfuMCE/s6lmbUO4LbOpFajsP2+iKSHEzEMjhOypkhVP3QtcP3HNnyrY+m1pK

Gy6NXpP9/n17JS0MVoa8WiP+D8Xvkig4/S0AiuuQLtblBpU5eX+RVxi5ei0yGa3Y

d19Ck0dw+TrbdpYkTC4pkBl+93r9XWSKnjZvBQ1rYccNk1ZorT9ThmShwVxIk7hj

YQ01Ns4TTox8F3cWiVfjxPMllkc7KtnKuqxAQgaS8rD14bAx5w47mGs8i72/OPVq

4WsO1iS3MLlv6ErCllHpb4jm4itZxwzd8fFv2skvk9zughzrXnRU6KU+uZ9hdzpS

uYbWiegu/3EV7SLMjXhCL1wTeHTKSl60M64GPoQxYGWcShycoKOUXlC+XgS6pYg0

B56Gs1C6RMJspBzBVmvL3vmaVW0VpCk35gUeuZq0l2/xqyOVFNg14CQJXFlohPaU

zVsLa+cngtzCAJbJBKG5CwAfE7osTuu5OsVoWZ8MjeoioiTaTg2B/nL2VAr1kG0L

tv14XR/xuYBtL5NjI4WFBe2VnW5npS/wiD7F1ArU+edPahWkyFrsYWUDsInzWgjE

1FUGKJeOW+KoH1cm+rcfM7AjC3fm6U64fXQQgAgoW+wBLFBxmDU=

=sUw0

-----END PGP SIGNATURE-----

D.]J. Bernstein <djb@cr.yp.to>

paper beginning "For keys limited to", in particular obtaining n = 6960

from a 1IMB limit.

The underlying security evaluations have always been explicitly based on
concrete analyses, _not_ asymptotics (even though asymptotics are
helpful for assessing security stability). This was already emphasized

in Section 8.2 of the original submission document:

https://classic.mceliece.org/nist/mceliece-20171129.pdf

The section begins as follows:

We emphasize that o(1) does not mean 0: it means something that
converges to @ as n > o, More detailed attack-cost evaluation is

therefore required for any particular parameters.

That section continues by pointing to the 2008 paper mentioned above,
https://eprint.iacr.org/2008/318, as the source of n = 6960. Anyone
checking that paper sees that the paper obtained this value of n via a

concrete analysis of that paper's attack, not from asymptotics.

Furthermore, that attack is noticeably faster than Prange's algorithm.
Asymptotically, this cost difference disappears into a 1+o(1) factor in
the exponent, but the parameter selection has never relied on any such

simplification.

To be clear, it's not that all of the parameter details are from 2008.
For example, to simplify KEM implementations, the Classic McEliece
parameter choices avoid list decoding (which would otherwise allow 1 or
2 extra errors). More importantly, the smaller parameter sets were not
in the original 2017 proposal; they were added in 2019, in response to

NIST making clear in 2019 that it wanted smaller options.

For any particular parameter set, evaluations of the Classic McEliece
parameter proposals using the 2008 scripts and various post-2008 scripts
show some differences, mostly minor differences regarding exactly which

attack overheads are counted and exactly which attacks are covered. The

Page 2 of 6

D.]J. Bernstein <djb@cr.yp.to>

largest quantitative differences come from the gaps between free memory

and realistic models.

The Classic McEliece team filed an OFFICIAL COMMENT years ago requesting
that NIST "fully define the cost metric to be used" for NISTPQC, so that

all submission teams could evaluate costs in this metric:

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/EiwxGnfQgec/m/LqckEVciAQAJ

In the absence of action by NIST to settle on a metric for NISTPQC, the
Classic McEliece team filed another OFFICIAL COMMENT in November 2021

with numbers from a recent estimator for all proposed parameter sets:

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/dN_00rvsLV4/m/QZ4UjtxnAwAl

For example, that estimator says 27279.2 for the 6960119 parameter set,
in line with the expectations stated in the original Classic McEliece
submission in 2017. This is not a surprise, given how stable the

landscape of attack algorithms has been.

> The security analysis then relies on the not quantified statement that no
> algorithmic improvement over Prange needs to be considered because in

> a real attack the memory access costs outweigh the improvement.

No. Section 8.2 of the 2017 submission document

https://classic.mceliece.org/nist/mceliece-20171129.pdf

started from the 2008 numbers (which are already better than Prange),
explicitly considered subsequent algorithms (see also Section 4.1 for
references), observed that the 2008 algorithm and subsequent algorithms
were bottlenecked by memory access, and stated the following regarding

the recommended 6960119 parameter set:
We expect that switching from a bit-operation analysis to a cost
analysis will show that this parameter set is more expensive to break

than AES-256 pre-quantum and much more expensive to break than

Page 3 of 6

D.]J. Bernstein <djb@cr.yp.to>

AES-256 post-quantum.

Adequate cost quantification wasn't in the literature at that point, but

is now readily available from the November 2021 OFFICIAL COMMENT:

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/dN_00rvsLV4/m/QZ4UjtxnAwAl

The submission has always stated that "ISD variants have reduced the
number of bit operations considerably below 27256" for 6960119, so the
category-5 assignment for this parameter set relies on accounting for
the costs of memory. For people who want category 5 while ignoring
memory costs, the 8192128 parameter set has always been fully specified

and implemented as part of the Classic McEliece proposal.

> While we would not agree that a processor with AES hardware

> acceleration is a particularly suboptimal way of attacking AES

Here is one way to see that an AES attacker using the same 7nm chip
technology can do _five orders of magnitude_ better than the paper's AES

attack:

* https://ww.ant-miner.store/product/antminer-s17-56th/ describes
real Bitcoin mining hardware carrying out 56 terahashes/second at
2520 watts, i.e., 45%10"-12 joules per hash. If these hashes are
full Bitcoin hashes, 2xSHA-256, then they are roughly the same cost
as 16xAES-128, so a similar AES attack box would use roughly
3x10"-12 joules per AES-128.

* The paper in question, https://eprint.iacr.org/2021/1634, reports
(in Section 7) 2.16%10"9 "AES encryptions per second performed by
our cluster". The cluster has four EPYC 7742 CPUs (according to
Section 4). The power consumption of the cluster isn't reported,
but presumably is on the scale of 1000 watts, i.e., on the scale of
500000%10"-12 joules per AES-128.

An easier analysis considers AT rather than energy. Each 64-core EPYC

7742 CPU has 32 billion transistors, meaning that each CPU core has half

Page 4 of 6

D.]J. Bernstein <djb@cr.yp.to>

a billion transistors:

https://hexus.net/tech/reviews/cpu/133244-amd-epyc-7742-2p-rome-server/?page=2

The AES attack in question uses the AES instructions, which, on each of
these cores, can at best carry out two parallel AES rounds per cycle

according to the Zen2 AESENC figures in Agner Fog's tables:

https://agner.org/optimize/instruction_tables.pdf

Each round uses a few thousand bit operations, with a small number of
transistors per bit operation, accounting for only a tiny fraction of
the transistors in the CPU. Standard key-search circuits instead have
almost all transistors performing cipher operations at each moment, with

minor overheads for key selection and comparison.

> but so are for ISD attacks.

Quantitatively, compared to their AES hardware, Intel and AMD put _much_
more of their hardware into optimizing memory access—a serious chunk

of each core, plus extensive off-chip resources—for obvious reasons.

The point here isn't that it's impossible to use special-purpose
hardware to streamline memory-intensive attacks. The point is that a
claim regarding the quantitative costs of two attacks, namely AES key
search and a memory-intensive ISD attack, was comparing time but
neglecting to account for vast differences in the hardware resources
used by the attacks. This is not a meaningful security comparison; it

does not correctly predict what large-scale attackers can do.

> But here you are asking xusx to provide the formalisms on which you

> seem to have based the security of the parameter sets.

No. The Classic McEliece team asked "NIST to fully define the cost

metric to be used for 'categories'". This is not something that should

be decided ad-hoc for particular attacks.

Page 5 of 6

D.]J. Bernstein <djb@cr.yp.to>

The submission has always explicitly advocated accounting for the real
cost of memory ("switching from a bit-operation analysis to a cost
analysis"). If it turns out that NIST asks for category 5 with free
memory: as noted above, the 8192128 parameter set has always been

available.

> We are modeling the xamortizedx memory access cost.

All of these algorithms are bottlenecked by large-scale data motion for,
e.g., sorting b-bit chunks of data, where b is small. It is physically
implausible that moving b bits of data large distances through an array

of size 2780 can be as cheap as 80b bit operations.

> Of course, by the inherent limitation given by our hardware constraints the

> data points for extrapolation are selected from a limited range.

The hardware does not require this selection: the same machine offers
lower-cost caches (and higher-cost storage beyond DRAM). Real graphs of

memory-access cost such as

https://i0.wp.com/chipsandcheese.com/wp-content/uploads/2022/06/image-4.png
https://i0.wp.com/chipsandcheese.com/wp-content/uploads/2022/06/image-1.png
source: https://chipsandcheese.com/2022/06/07/sunny-cove-intels-lost-generation/

are forced by distance constraints to be worse than square-root lines in
log space, and are then bumped to locally horizontal line segments (L1
cache, L2 cache, etc.) to simplify the engineering. Taking experiments
within one of those horizontal line segments, and then extrapolating
horizontally from this selection of data (or logarithmically, which on
such a small scale is difficult to robustly distinguish from

horizontally), gives incorrect predictions for larger sizes.

—D. J. Bernstein (speaking for myself, beyond the quotes)

Page 6 of 6

	1. 2022-06-06 12:21- D. J. Bernstein
	2. 2022-06-08 05:20- Andre Esser
	3. 2022-06-14 00:07- D. J. Bernstein

